<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
</head>
<body style="word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class="">
<br class="">
<div>
<div class="">
<div class="WordSection1" style="page: WordSection1; caret-color: rgb(0, 0, 0); font-family: Geneva; font-size: 14px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration: none;">
<h2 style="margin: 0cm; font-size: 18pt; font-family: Calibri, sans-serif; font-weight: bold; background-color: white;" class="">
<span style="font-family: McGillSerif-Medium; font-weight: normal;" class="">The brain's structural connectome is organized to support efficient control of state transitions</span><span style="font-family: McGillSerif-Medium; font-weight: normal;" class=""><o:p class=""></o:p></span></h2>
<p style="margin-right: 0cm; margin-bottom: 12pt; margin-left: 0cm; background-color: white; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; word-spacing: 0px;" class="">
<span style="font-size: 12pt; font-family: McGillSans-Regular;" class="">Danielle Bassett, University of Pennsylvania<br class="">
Tuesday September 21, 12-1pm<br class="">
Zoom Link: </span><span style="" class=""><a href="https://mcgill.zoom.us/j/85428056343" target="_blank" style="color: rgb(5, 99, 193); text-decoration: underline;" class=""><span style="font-size: 12pt; font-family: McGillSans-Regular;" class="">https://mcgill.zoom.us/j/85428056343</span></a></span><span style="font-size: 12pt; font-family: McGillSans-Regular;" class=""><o:p class=""></o:p></span></p>
<p style="margin-right: 0cm; margin-bottom: 12pt; margin-left: 0cm; background-color: white; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; word-spacing: 0px;" class="">
<strong class=""><span style="font-size: 12pt; font-family: McGillSans-Regular;" class="">Abstract: </span></strong><span style="font-size: 12pt; font-family: McGillSans-Regular;" class="">The human brain is a complex organ characterized by heterogeneous patterns
of interconnections. Non-invasive imaging techniques now allow for these patterns to be carefully and comprehensively mapped in individual humans, paving the way for a better understanding of how wiring supports cognitive processes. While a large body of work
now focuses on descriptive statistics to characterize these wiring patterns, a critical open question lies in how the organization of these networks constrains the potential repertoire of brain dynamics. In this talk, I will describe an approach for understanding
how perturbations to brain dynamics propagate through complex wiring patterns, driving the brain into new states of activity. Drawing on a range of disciplinary tools – from graph theory to network control theory and optimization – I will identify control
points in brain networks and characterize trajectories of brain activity states following perturbation to those points. Finally, I will describe how these computational tools and approaches can be used to better understand the brain's intrinsic control mechanisms
and their alterations in psychiatric conditions.<o:p class=""></o:p></span></p>
<div style="margin: 0cm; font-size: 11pt; font-family: Calibri, sans-serif;" class="">
<br class="">
</div>
</div>
</div>
</div>
</body>
</html>